Propriétés de calculs

Troisième Les puissances
Welcome
Tu n'as pas le rubis de cette compétence.
Réussis les tests pour le gagner !

Applications très simples des propriétés.
Ecris ces expressions sous la forme d'une puissance, ou d'un entier : 

\((-4)^{-3}\times(-4)^{4}=\)

\(3^{-5}\times3^{-1}=\)

\(12^{-2}\times12^{4}=\)

\(5^{-5}\times5^{5}=\)

     

Erreur
Regarde la vidéo en dessous pour comprendre.

Bravo ! Tu as réussi

Cette fois-ci utilise la propriété sur le quotient de puissances !
Ecris ces expressions sous la forme d'une puissance, ou d'un entier : 

\(\frac{2^{4}}{2^{5}}=\)

\(\frac{(-3)^{-5}}{(-3)^{-1}}=\)

\(\frac{9^{4}}{9^{4}}=\)

\(\frac{4^{-4}}{4^{3}}=\)

     

Erreur
Regarde la vidéo en dessous pour comprendre.

Bravo ! Tu as réussi

Et enfin on va calculer des puissances de puissances !
Ecris ces expressions sous la forme d'une puissance, ou d'un entier : 

\(\left((-2)^{3}\right)^{-1}=\)

\(\left(12^{-4}\right)^{5}=\)

\(\left(5^{4}\right)^{2}=\)

\(\left(3^{2}\right)^{2}=\)

     

Erreur
Regarde la vidéo en dessous pour comprendre.

Bravo ! Tu as réussi

Allez on va combiner les 3 propriétés !
Si tu y arrives de tête tant mieux, sinon prends une feuille 📜.
Ecris ces expressions sous la forme d'une puissance, ou d'un entier : 

\(\frac{9^{3}\times9^{5}}{\left(9^{3}\right)^{-2}\times9^{-4}}=\)

\(\frac{\left(-3\right)^{-3}\times\left(-3\right)^{-3}}{\left(\left(-3\right)^{-2}\right)^{3}\times\left(-3\right)^{2}}=\)

\(\frac{5^{5}\times5^{-2}}{\left(5^{4}\right)^{2}\times5^{5}}=\)

\(\frac{5^{-5}\times5^{2}}{\left(5^{5}\right)^{-5}\times5^{-2}}=\)

     

Erreur
Regarde la vidéo en dessous pour comprendre.

Bravo ! Tu as réussi

Quelques propriétés sont indispensables pour réussir cette compétence.
Prenons a et b deux nombres relatifs, et n et m deux entiers.

 

On a :

  • \(a^n\times a^m=a^{n+m}\)

    Par exemple \(8^4 \times 8^5 =8^{9}\)
     
  • \(\frac{a^n}{a^m}=a^{n-m}\)

    Par exemple \(\frac{8^4}{8^5}=8^{-1}\)
     
  • \(\left(a^n\right)^m= a^{n\times m}\)

    Par exemple \(\left(8^3\right)^2= 8^{3\times 2}=8^{6}\)

 

Tu devrais t'en sortir avec ces propriétés, à mémoriser !